Total Pages: 2

Reg No.
Name: \qquad
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017

Course Code: CS201
Course Name: DISCRETE COMPUTATIONAL STRUCTURES (CS, IT)
Max. Marks: 100
Duration: 3 Hours

PART A
 Answer all questions, each carries 3 marks.

 three must be mutual strangers.4 Define GLB and LUB for a partially ordered set. Give an example

PART B

Answer any two full questions, each carries 9 marks.
5 a) Suppose $f(x)=x+2, g(x)=x-2$ and $h(x)=3 x$ for $x \in R$,where R is the set of real numbers. Find gof,fog, fof, gog, foh, hog,hoh and (foh) og
b) Prove that every equivalence relation on a set generates a unique partition of the set with the blocks as R-equivalence classes
a) Show that the set N of natural numbers is a semigroup under the operation
$x * y=\max (x, y)$. Is it a monoid?
b) Solve the recurrence relation $a_{r}+5 a_{r-1}+6 a_{r-2}=3 r^{2}-2 r+1$
a) Show that for any commutative monoid $<\mathrm{M}, *>$, the set of idempotent elements of M forms a submonoid.
b) Define subsemigroups and submonoids.

PART C

Answer all questions, each carries 3 marks.
8 Show that, for an abelian group, $(a * b)^{-1}=a^{-1} * b^{-1}$
9 Show that every chain is a distributive lattice.
10 Simplify the Boolean expression a'b'c + ab' $\mathbf{c}+\mathrm{a}^{\prime} \mathrm{b}^{\prime}{ }^{\prime}$ '
Let $G=\left\{1, a, a^{2}, a^{3}\right\}\left(a^{4}=1\right)$ be a group and $H=\left\{1, a^{2}\right\}$ is a subgroup of G under multiplication. Find all cosets of H .

PART D

Answer any two full questions, each carries 9 marks.

12 a) Show that the order of a subgroup of a finite group divides the order of the group.
b) Define ring homomorphism.

13 Show that (I, Θ, \odot) is acommutative ring with identity, where the operations Θ and \odot are defined, for any $a, b \in I$, as $a \Theta b=a+b-1$ and $a \odot b=a+b-a b$.
14 a) Let (L, \leq) be a lattice and $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{L}$. Prove that if $\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{d}$, then
(i) $a \vee b \leq c \vee d$
(ii) $a \wedge b \leq c \wedge d$
b) Show that in a Boolean algebra,for any $\mathrm{a}, \mathrm{b}, \mathrm{c}$

$$
(a \wedge b \wedge c) \vee(b \wedge c)=b \wedge c
$$

PART E
Answer any four full questions, each carries 10 marks.
15
a) a) Construct truth table for $(\sim \mathrm{p} \wedge(\sim q \wedge r)) \vee((q \wedge r) \vee(p \wedge r))$
b) Explain proof by Contrapositive with example.

16 Prove the following implication
$(x)(P(x) \vee Q(x))==>(x) P(x) \wedge(\exists x) Q(x)$
17 a) Represent the following sentences in predicate logic using quantifiers
(i) " x is the father of the mother of y "
(ii) "Everybody loves a lover"
b) Determine whether the conclusion C follows logically from the premises

$$
\mathrm{H}_{1}: \sim \mathrm{p} \vee \mathrm{q}, \mathrm{H}_{2}: \sim(\mathrm{q} \wedge \sim \mathrm{r}), \mathrm{H}_{3}: \sim \mathrm{r} \quad \mathrm{C}: \sim \mathrm{p}
$$

18 a) Without using truth table prove $\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{p})<\Rightarrow \sim \mathrm{p} \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$
b) Determine the validity of the following statements using rule CP .
"my father praises me only if I can be proud of myself. Either I do well in sports or I can't be proud of myself. If I study hard, then I can't do well in sports. Therefore if my father praises me then I do not study well"
19 a) Show that $r \rightarrow s$ can be derived from the premises $p \rightarrow(q \rightarrow s), \sim r \vee p, q$
b) Prove, by Mathematical Induction, that $n(n+1)(n+2)(n+3)$ is divisible by 24 , for all natural numbers n

20 a) "If there are meeting, then travelling was difficult. If they arrived on time, then travelling was not difficult. They arrived on time. There was no meeting". Show that these statements constitute a valid argument.
b) Show that $2^{n}<n$! For $n \geq 4$

