\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

 THIRD SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018
Course Code: MA201

Course Name: LINEAR ALGEBRA AND COMPLEX ANALYSIS

Duration: 3 Hours

PART A
 Answer any two full questions, each carries 15 marks

1 a) Let $f(z)=u(x, y)+i v(x, y)$ be defined and continuous in some neighbourhood of a point $z=x+i y$ and differentiable at z itself. Then prove that the first order partial derivatives of u and v exist and satisfy the Cauchy - Riemann equations.
b) Prove that $u=\sin x \cosh y$ is harmonic. Hence find its harmonic conjugate.

2 a) Find the image of the region $\left|z-\frac{1}{3}\right| \leq \frac{1}{3}$ under the transformation $w=\frac{1}{z}$
b) Find a linear fractional transformation which maps $-1,0,1$ onto $1,1+i, 1+2 i$.
a) Check whether the function $f(z)=\left\{\begin{array}{ll}\frac{R e\left(z^{2}\right)}{|z|^{2}} & \text { if } z \neq 0 \\ 0 & \text { if } z=0\end{array}\right.$ is continuous at $z=0$.
b) Find the image of the x -axis under the linear fractional transformation $w=\frac{z+1}{2 z+4}$

PART B

Answer any two full questions, each carries 15 marks
4 a) Evaluate $\int_{C} \operatorname{Im}\left(z^{2}\right) d z$ where C is the triangle with vertices $0,1, i$ counterclockwise.
b) Using Cauchy's Integral Formula, evaluate $\int_{c} \frac{z^{2}}{z^{3}-z^{2}-z+1} d z$ where c is taken counter-clockwise around the circle:
i) $|z+1|=\frac{3}{2}$
ii) $|z-1-i|=\frac{\pi}{2}$

5 a) Determine and classify the singular points for the following functions:
i) $f(z)=\frac{\sin z}{(z-\pi)^{2}}$
ii) $g(z)=(z+i)^{2} e^{\left(\frac{1}{z+i}\right)}$
b) Evaluate $\int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)^{3}} d x$.

6 a) Evaluate $\int_{C} \frac{\tan z}{z^{2}-1} d z$ counter clockwise around $c:|z|=\frac{3}{2}$ using Cauchy's Residue Theorem.
b) Find all Taylor series and Laurent series of $f(z)=\frac{-2 z+3}{z^{2}-3 z+2}$ with centre 0 in
i) $|z|<1$
ii) $1<|z|<2$.

PART C

Answer any two full questions, each carries 20 marks

7 a) Solve the system of equations by Gauss Elimination Method:
$3 x+3 y+2 z=1, \quad x+2 y=4,10 y+3 z=-2, \quad 2 x-3 y-z=5$.
b) Prove that the vectors $(1,1,2),(1,2,5),(5,3,4)$ are linearly dependent.
c) Prove that the set of vectors $V=\left\{\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}:-v_{1}+v_{2}+4 v_{3}=0\right\}$ a vector space over the field \mathbb{R}. Also find the dimension and the basis.
8 a) Find the Eigen values and the corresponding Eigen vectors of
$A=\left[\begin{array}{rrr}1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1\end{array}\right]$
b) What kind of conic section is given by the quadratic form $7 x_{1}{ }^{2}+6 x_{1} x_{2}+7 x_{2}{ }^{2}=$ 200. Also find its equation.
c) Determine whether the matrix $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right]$ symmetric, skewsymmetric or orthogonal.
9 a)
Reduce the matrix $A=\left[\begin{array}{rrrr}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right]$
find its rank.
b)

Diagonalize $A=\left[\begin{array}{rrr}3 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 3\end{array}\right]$

