Reg. No. \qquad Name:
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
THIRD SEMESTER B.TECH DEGREE EXAMINATION, JULY 2017
Course Code: MA 201
Course Name: LINEAR ALGEBRA AND COMPLEX ANALYSIS.
Max. Marks :100
Duration: 3 hours

PART A

Answer any two questions.

1. (a) Does the limit $\operatorname{Lim}_{z \rightarrow 0} \frac{z}{z}$ exit? If yes find the value. If no, explain why?
(b) If $f(z)=u+i v$ is analytic, prove that $u=$ constant and $v=$ constant are families of curves cutting orthogonally
2. (a) Find the image of the semi-circle $y=+\sqrt{4-x^{2}}$ under the transformation $w=z^{2}$
(b) Find the image of the half-plane $\operatorname{Re}(z) \geq 2$ under the map $w=i z$
3. (a) Find the points, if any, in complex plane where the function $f(z)=2 x^{2}+y+$ $i\left(y^{2}-x\right)$ is
(i) differentiable (ii) analytic.
(b) Prove that the function $u(x, y)=x^{3}-3 x y^{2}-5 y$ is harmonic everywhere. Also find the harmonic conjugate of u.

PART B

Answer any two questions.

4. (a) Evaluate $\int_{C} \bar{z} d z$ where C is given by $x=3 t, y=t^{2},-1 \leq t \leq 4$.
(b) Show that $\int_{C}(2+z)^{2} d z=-\frac{i}{3}$ where C is any path connecting the points -2 and $-2+i$
5. (a) Evaluate $\int_{C} \frac{5 z+7}{z^{2}+2 z-3} d z$ where C is the circle $|z-2|=2$.
(b) Find the Laurent's series expansion of $\frac{1}{z-z^{3}}$ in $1<|z+1|<2$.
6. (a) Use Cauchy's integral formula to evaluate $\int_{C} \frac{z+1}{z^{4}+2 i z^{3}} d z$ where C is $|z|=1$.
(b) Using Contour integration, evaluate $\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} d x$

PART C

Answer any two questions.

7. (a) Using Gauss elimination method, find the solution of the system of equations $x+2 y-z=3,3 x-y+2 z=1,2 x-2 y+3 z=2$ and $x-y+z=-1$
(b) Find the values of μ for which the system of equations $x+y+z=1, x+2 y+$ $3 z=\mu$ and $\quad x+5 y+9 z=\mu^{2}$ will be consistent. For each value of μ obtained, find the solution of the system.
(c) Prove that the vectors $(2,3,0)$. $(1,2,0)$ and $(8,13,0)$ are linearly dependent in R^{3}.
8. (a) Find the rank of the matrix $A=\left[\begin{array}{cccc}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -1 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right]$
(b) Find the eigen values and eigen vectors of the matrix $\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$
(c) Write the canonical form of the quadratic form $Q(x, y, z)=3 x^{2}+5 y^{2}+3 z^{2}-$ $2 x y+2 x z-2 y z$ and hence show that $Q(x, y, z)>0$ for all non-zero values of x, y, z.
9. (a) Diagonalize the matrix $A=\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$ and hence find A^{4}.
(b) If 2 is an eigen value of $\left[\begin{array}{rcc}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$, without using its characteristic equation, find the other eigen values. Also find the eigen values of $A^{3}, A^{T}, A^{-1}, 5 A, A-3 I$ and adj A.
(c) Show that $17 x^{2}-30 x y+17 y^{2}=128$ represents an ellipse. Also find the equations of the major and minor axes of the ellipse in terms of x and y.
