\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

 FOURTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018
Course Code: MA202
 Course Name: PROBABILITY DISTRIBUTIONS, TRANSFORMS AND NUMERICAL METHODS

Max. Marks: 100

Normal distribution table is allowed in the examination hall.

PART A (MODULES I AND II)
Answer two full questions.
1 a) Suppose that the probabilities are $0.4,0.3,0.2$, and 0.1 that there will be $0,1,2$, or 3 power failures in a certain city during the month of July. Find the mean and variance of this probability distribution.
b) During one stage in the manufacture of integrated circuit chips, a coating must be applied. If 70% of chips receive a thick enough coating. Use Binomial distributionto find the probabilities that, among 15 chips
(i) at least 12 will have thick enough coating;
(ii) at most 6 will have thick enough coating;
(iii) exactly 10 will have thick enough coating.

2 a) If the distribution function of a random variable is given by

$$
F(x)=\left\{\begin{array}{ll}
1-\frac{1}{x^{2}} & \text { for } \tag{7}\\
0>1 \\
0 & \text { for } x \leq 1
\end{array}\right\}
$$

find the probabilities that this random variable will take on a value
(i) less than 3;
(ii) between 4 and 5 .
b) In a given city, 6% of all drivers get at least one parking ticket per year. Use the Poisson approximation to the binomial distribution to determine the probabilities that among 80 drivers(randomly chosen in the city):
(i) 4 will get at least one parking ticket in any given year;
(ii) at least 3 will get at least one parking ticket in any given year;
(iii) anywhere from 3 to 6 , inclusive, will get at least one parking ticket in any given year.
3 a) Derive mean and variance of uniform distribution.
b) The time required to assemble a piece of machinery is a random variable having approximately a normal distribution with mean 12.9 minutes and standard deviation 2.0 minutes. What are the probabilities that the assembly of a piece of machinery of this kind will take
(i) at least 11.5 minutes;
(ii) anywhere from 11.0 to 14.8 minutes?

PART B (MODULES III AND IV)
 Answer two full questions.

4 a) Using Fourier cosine integral, show that $\int_{0}^{\infty} \frac{\cos x w}{1+w^{2}} d w=\frac{\pi}{2} e^{-x}$ if $x>0$.
b) Find the Fourier sine transform of $f(x)=\left\{\begin{array}{ll}\sin x & \text { if } 0<x<\pi \\ 0 & \text { if } x>\pi\end{array}\right\}$.

5 a) Find the Fourier transform of $f(x)=\left\{\begin{array}{lll}e^{k x} & \text { if } & x<0 \\ 0 & \text { if } & x>0\end{array}\right\}, k>0$.
b) Find the inverse Laplace transform of $\frac{5}{\left(s^{2}+1\right)\left(s^{2}+25\right)}$ using Convolution Theorem.
6 a) Find the Laplace transforms of (i) $t e^{k t}(i i) \cos (w t+\theta)$
b) Solve the initial value problem $y^{\prime \prime}-y^{\prime}-6 y=0, y(0)=6, y^{\prime}(0)=13$ by using Laplace transforms.

PART C (MODULES V AND VI)
 Answer two full questions.

7 a) Find the positive solution of $2 \sin x=x$ by using Newton-Raphson method, the solution is near to 2 .
b) Calculate the Lagrange polynomial $p(x)$ for the 4-D values of the function $f(x)$, $f(1.00)=1.0000, f(1.02)=0.9888, f(1.04)=0.9784$, and from it find the approximate value of $f(x)$ at $x=1.005$.
c) Compute $f(1.5)$ from $f(1)=-1, f(2)=-1, f(3)=1, f(4)=5$ by using Newton's forward interpolation formula.
8 a) Solve $6 x_{1}+2 x_{2}+8 x_{3}=26, \quad 3 x_{1}+5 x_{2}+2 x_{3}=8, \quad 8 x_{2}+2 x_{3}=-7 \quad$ by Gauss Elimination method.
b) Find the value of $(13)^{1 / 3}$ using Newton Raphson method.
c) Evaluate $\int_{0}^{1} e^{-x^{2}} d x$ by Trapezoidal rule taking 10 subintervals.

9 a) Use Euler's method with $h=0.1$,compute the value of $y(0.5)$ for the equation $y^{\prime}=(y+x)^{2}, y(0)=0$.
b) Use Runge-Kutta method with $h=0.1$, compute the value of $y(0.1)$ for the equation $y^{\prime}=x y^{2}, y(0)=1$.
c) Evaluate $\int_{0}^{1} \frac{d x}{\cos ^{2} x}$ by Simpson's rule taking 10 subintervals and compare it with the exact solution.

