Reg No.: \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

 FIFTH SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018
Course Code: CS309
 Course Name: GRAPH THEORY AND COMBINATORICS

Max. Marks: 100
Duration: 3 Hours

PART A

Answer all questions, each carries 3 marks

1 Define isomorphism between two graphs. Are the following graphs are isomorphic to each other? Justify your answer.

2 For the following graph, find the shortest path between fromv1 to v4. Also find a Euler circuit.

3 Define the following with example.
i) Isomorphic digraph \quad ii) Complete symmetric digraph

4 Define Hamiltonian graph.Find an example of a non-Hamiltonian graph with a Hamiltonian path.

PART B

Answer any two full questions, each carries 9 marks

5 a) For a Eulerian graph G, prove the following properties.
i) The degree of each vertex of G is even. ii) G is an edge-disjoint union of cycles.
b) Discuss the Konigsberg Bridge problem.Is there any solution to the problem? Justify your answer.
a) Prove that a simple graph with n vertices must be connected, if it has more than $(n-1)(n-2) / 2$ edges.
b) 19 students in a nursery school play a game each day, where they hold hands to form a circle. For how many days can they do this, with no students holding hands with the same playmates more than once? Substantiate your answer with graph theoretic concepts.

7 a) Prove that the number of odd degree vertices in a graph is always even.
b) Show that in any group of two or more people, there are always two with exactly the same number of friends inside the group.

PART C

Answer all questions, each carries 3 marks

8 Discuss the dual of a subgraph with example.
$9 \quad$ Write notes on the fundamental circuit.
10 Prove that in a tree $\mathrm{T}(\mathrm{V}, \mathrm{E}),|\mathrm{V}|=|\mathrm{E}|+1$.
11 Define spanning tree with example.

PART D

Answer any two full questions, each carries 9 marks

12 Prove that the ring sum of any two cut-sets in a graph is either a third cut-set or an edge-disjoint union of cut-sets.
13 a) Prove that a connected planar graph with n vertices and e edges has e-n+2 regions.
b) Consider the following graph G and any one of its spanning trees, T.List all fundamental circuits and fundamental cut-sets with respect to T .

14 a) Show that the distance between vertices of a connected graph is a metric.
b) Discuss the center of a tree with suitable example.

PART E

Answer any four full questions, each carries 10 marks

15 a) Define the adjacency matrix $\mathrm{X}(\mathrm{G})$ of a graph. Let $\mathrm{X}(\mathrm{G})$ be adjacency matrix of a simple graph G, then prove that $\mathrm{ij}^{\text {th }}$ entry in X^{r} is the number of different edge sequences of r edges between vertices v_{i} and V_{j}.
b) Draw the adjacency graph for the following adjacency matrix.

$$
X(G)=\left(\begin{array}{lllll}
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

16 a) Define the circuit-matrix $B(G)$ of a connected graph G with n vertices and e edges. Prove that the rank of $B(G)$ is e-n+1.
b) Write the fundamental circuit matrix with respect to the spanning tree shown in heavy lines for the following graph.

17 Discuss an algorithm for finding the shortest path from a specified vertex to another specified vertex. Illustrate with example.
18 Discuss an algorithm for finding the connected components of a graph G with suitable example.
19 Discuss an algorithm to find the minimum spanning tree of a graph G with example.
20 a) Define the incidence matrix of a graph G.Prove that the rank of an incidence matrix of a connected graph with n vertices is $n-1$.
b) Draw the graph represented by the following incidence matrix.

$$
X(G)=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

