Total Pages: 2
Reg No.: \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIFTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017

Course Code: CS301

Course Name: THEORY OF COMPUTATION (CS)

Max. Marks: 100

Duration: 3 Hours

PART A

Answer all questions, each carries 3 marks.

Marks
1 Define Non Deterministic Finite Automata? Compare its ability with Deterministic Finite Automata in accepting languages.
2 Write the notations for the language accepted by DFA, NFA, ϵ-NFA
3 Can we use finite state automata to evaluate 1's complement of a binary number?
Design a machine to perform the same.
4 Define Two-way finite automata

PART B

Answer any two full questions, each carries 9 marks.
5 a) Design a Finite state automata which accepts all strings over $\{0,1\}$ with odd number of 1 's and even number of 0 's.
b) Show the changes needed to convert the above designed automata to accept even number of 1 's and odd number of 0's
a) Construct Regular grammar for the regular expression :
$L=(a+b)^{*}(a a+b b)(a+b)^{*}$
b) List the closure properties of Regular sets.

State Myhill-Nerode theorem. Minimize the following DFA by table filling method using Myhill-Nerode theorem describing the steps in detail.

> PART C
> Answer all questions, each carries 3 marks.

8 Which Normal Form representation of CFG will you prefer in converting CFG to
NPDA? Why?

9 What do you mean by useless symbol in a grammar? Show the elimination of useless symbols with an example.
10 Explain the different methods by which a PDA accepts a language.
11 Can we construct a Deterministic PDA for the language ww ${ }^{\mathrm{R}}$? Justify your answer. Otherwise how can we modify this language to make it accepted by DPDA.

PART D
Answer any two full questions, each carries 9 marks.
12 Define CFG for the following languages over the alphabets $\{a, b\}$
i. $\quad \mathrm{L}=\left\{\mathrm{a}^{\mathrm{m}+\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mathrm{c}^{\mathrm{n}} \mathrm{n}, \mathrm{m}>0\right\}$
ii. L contains all odd length strings only
iii. $L=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 2^{\mathrm{n}} \mathrm{n}>0\right\}$

13 Design a Push Down Automata for the language $L=\left\{a^{n} b^{2 n} \mid n>0\right\}$
Trace your PDA with $\mathrm{n}=3$.
14 Prove that the following languages are not regular
i. $\quad L=\left\{0^{i^{2}}\right.$ such that $\left.i \geq 1\right\}$ is not regular
ii. $\quad L=\left\{a^{p}\right.$ such that p is a prime n umber

PART E
Answer any four full questions, each carries 10 marks.
State and prove pumping lemma for Context Free Languages.
Construct a Turing machine that recognizes the language $L=\left\{a^{n} b^{n} c^{n} \mid n>0\right\}$
a) What is a Context sensitive grammar(CSG). Design a CSG to accept the language $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 2^{\mathrm{n}} \mid \mathrm{n}>0\right\}$
b) Define Linear Bound Automata

18 a) Write a note on Recursive Enumerable Languages
b) Discuss about Universal Turing Machines

19 a) Explain Chomsky's Hierarchy of Languages
b) LetL $=\left\{\mathrm{x} / \mathrm{x} \in(\mathrm{a}+\mathrm{b}+\mathrm{c})^{*}\right.$ and $\left.|\mathrm{x}|_{\mathrm{a}}=|\mathrm{x}|_{\mathrm{b}}=|\mathrm{x}|_{\mathrm{c}}\right\}$. What class of language does Lbelong? Why? What modification will you suggest in the grammar to accept this language?
Discuss the Undecidable Problems About Turing Machines

