Reg No.: \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SECOND SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018

Course Code: MA102

Course Name: DIFFERENTIAL EQUATIONS

Max. Marks: 100
Duration: 3 Hours

PART A

Answer all questions, each carries 3 marks.
1 Solve the initial value problem $x y^{\prime}=y-1, y(0)=1$
Marks

2 Solve the following differential equation by reducing it to first order $x y^{\prime \prime}=2 y^{\prime}$.
3 Find the particular integral of $\left(D^{2}+3 D+2\right) y=3$.
4 Find the particular integral of $y^{\prime \prime}+y=\sin x$.
$5 \quad$ Obtain the Fourier series expansion for the function $f(x)=x$ in the range $-\pi<$ $x<\pi$.
6 Find the Fourier sine series of the function $f(x)=\pi x-x^{2}$ in the interval $(0, \pi)$
7 Form a partial differential equation by eliminating the arbitrary function in $x y z=$ $\emptyset(x+y+z)$
8 Solve $r+s-2 t=e^{x+y}$.
9 Solve one dimensional wave equation for $k<0$.
10 Solve $\frac{\partial u}{\partial x}-2 \frac{\partial u}{\partial y}-u=0, u(x, 0)=6 e^{-3 x}$ using method of separation of variables.
11 Find the steady state temperature distribution in a rod of length 30 cm if the ends are kept at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$.
12 Write down the possible solutions of one dimensional heat equation.

PART B

Answer six questions, one full question from each module.

Module I

13 a) Verify that the given functions $x^{\frac{3}{2}}, x^{-\frac{1}{2}}$ are linearly independent and form a basis of solution space of given ODE $4 x^{2} y^{\prime \prime}-3 y=0$.
b) Solve the boundary value problem:

> OR

14 a) Find the general solution of $y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=0$.
b) Find a fundamental set of solutions of $2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0, t<0$. Given that $y_{1}(t)=\frac{1}{t}$ is a solution.

Module II

15 a) Find the particular integral of $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=4 \cos ^{2} x$.
b) Solve $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=\frac{e^{3 x}}{x^{2}}$ using method of variation of parameters.

OR

16 a) Solve $x^{2} y^{\prime \prime}-x y^{\prime}-3 y=x^{2} \ln x$
b) Solve $y^{\prime \prime \prime \prime}-2 y^{\prime \prime \prime}+5 y^{\prime \prime}-8 y^{\prime}+4 y=e^{x}$.

Module III

17 a) Obtain the Fourier series expansion of $f(x)=x \sin x$ in the interval $(-\pi, \pi)$.
b) Find the half range sine series of $f(x)=k$ in the interval $(0, \pi)$.

OR

18 a) Find the Fourier series of $f(x)=\left(\frac{\pi-x}{2}\right)^{2}$ in the interval $(0,2 \pi)$.
b) Find the half range sine series of $f(x)=e^{x}$ in $(0,1)$.

Module IV

19
a) Solve $\frac{\partial^{3} z}{\partial x^{3}}-4 \frac{\partial^{3} z}{\partial x^{2} \partial y}+4 \frac{\partial^{3} z}{\partial x \partial y^{2}}=2 \sin (3 x+2 y)$
b) Solve $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q=z\left(x^{2}-y^{2}\right)$

OR

20 a) Form the PDE by eliminating a, b, c from $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
b) Solve $(x+y) z p+(x-y) z q=x^{2}+y^{2}$.

Module \mathbf{V}

21 A tightly stretched violin string of length ' a ' and fixed at both ends is plucked at its mid-point and assumes initially the shape of a triangle of height ' h '. Find the displacement $u(x, t)$ at any distance ' x ' and any time ' t ' after the string is released from rest.

OR

Solve the PDE $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
Boundary conditions are $u(0, t)=u(l, t)=0, t \geq 0$
Initial conditions are $y(x, 0)=a \sin \left(\frac{\pi x}{l}\right)$ and $\frac{\partial y}{\partial t}=0$ at $t=0$.

Module VI

23 A rod, 30 cm long has its ends A and B kept at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively, until the steady state conditions prevail. The temperature at each end is then suddenly reduced to $0^{0} \mathrm{C}$ and kept so. Find the resulting temperature function $\mathrm{u}(\mathrm{x}, \mathrm{t})$ taking $\mathrm{x}=0$ at A .

OR

24 A long iron rod with insulated lateral surface has its left end maintained at a temperature $0^{\circ} \mathrm{C}$ and its right end at $\mathrm{x}=2$, maintained at $100^{\circ} \mathrm{C}$. Determine the temperature as a function of ' x ' and ' t ' if the initial temperature is
$u(x, 0)=\left\{\begin{array}{ll}100 x, & 0<x<1 \\ 100, & 1<x<2\end{array}\right.$.

