Total Pages: 3

Reg. No. \qquad Name: \qquad
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, JANUARY 2017
(Regular \& Supplementary)
Course Code: BE100

Course Name: ENGINEERING MECHANICS

Max. Marks: 100
Duration: 3 Hours

PART A

Answer all questions. Each question carries 5 marks

1. The greatest and least resultants of two forces F1 and F2 are 17 N and 3 N respectively. Determine the angle between them when their resultant is $\sqrt{149} \mathrm{~N}$.
2. A simply supported beam AB of span 4 m is carrying point loads $5 \mathrm{kN}, 2 \mathrm{kN}$, and 3 kN at $1 \mathrm{~m}, 2 \mathrm{~m}$, and 3 m respectively from the support A. Calculate the support reactions at A and B .
3. State and explain parallel axis theorem.
4. Distinguish static friction and dynamic friction.
5. In an office, a lift is moving upwards with an acceleration of $1.5 \mathrm{~m} / \mathrm{s}^{2}$. Find the force exerted by a body of mass 30 kg on the floor of the lift?
6. Explain the concept of instantaneous centre? How can you locate it?
7. Distinguish between free vibration and forced vibration.
8. What are the general conditions of simple harmonic motion?

PART B

Answer TWO questions from each SET

SET 1

Each question carries 10 marks

9. ABCD is a square, each side being 20 cm and E is the middle point of AB . Forces of magnitude $7,8,12,5,9$ and 6 kN act on lines of directions $\mathrm{AB}, \mathrm{EC}, \mathrm{BC}, \mathrm{BD}, \mathrm{CA}$ and DE respectively. Find the magnitude and direction of resultant force.
10. Three cylinders weighing 100 N each and 80 mm diameter are placed in a channel of width 180 mm as in Figure 1. Determine the force exerted by (a) the cylinder A on B

C B1C008

Total Pages:3

at the point of contact (b) the cylinder B on the base and (c) the cylinder B on the wall.

Fig. 1
11. Determine the support reactions at A \& B for the beam shown in Fig. 2

Fig. 2

SET 2

Each question carries 10 marks

12. Locate the centroid of the shaded area given in figure 3.

Fig. 3
13. A uniform ladder of 4 m length rests against a vertical wall with which it makes an angle of 45°. The coefficient of friction between the ladder and the wall is 0.4 and that between ladder and floor is 0.5 . If a man, whose weight is one-half of the weight of ladder, ascends it, how high will he be when the ladder slips?
14. An effort of 200 N is required just to move a certain body up an inclined plane of angle 15°, the force acting parallel to the plane. If the angle of inclination of the plane is made 20° the effort required, again parallel to the plane is found to be 230 N . Find the weight of the body and the coefficient of friction.

SET 3

Each question carries 10 marks

15. For a reciprocating pump, crank OA rotates at a uniform speed of 300 rpm . The length of crank and connecting rod are 12 cm and 50 cm respectively. Find (1) the angular velocity of the connecting $\operatorname{rod} \mathrm{AB}$ and (ii) the velocity of piston when the crank makes an angle 30° with the horizontal.
16. Two blocks A and B of weight 150 N and 100 N are released from rest on a 30° inclined plane, when they are 15 m apart. The coefficient of friction between the upper block A and the plane is 0.2 and that between the lower block B and the plane is 0.4. In what time block A reach block B? After they touch and move as a single unit, what will be acceleration with which it will move down?
17. A spring stretches by 0.015 m when a 1.75 kg object is suspended from its end. How much mass should be attached to the spring so that its frequency of vibration is 3.0 Hz ?
