\qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE EXAMINATION, DEC 2016
 (2016 ADMISSION)

Course Code: MA 101
 Course Name: CALCULUS

Max. Marks: 100
Duration: 3 Hours

PART A

Answer ALL questions

1 (a) Determine whether the series $\sum_{k=1}^{\infty}\left(\frac{3}{4}\right)^{k+2}$ converges and if so, find its sum.
(b) Find the Maclaurin series for the function $x e^{x}$

2 (a) If $=x^{y}$, then find $\frac{\partial^{2} z}{\partial x \partial y}$
(b) Compute the differential $d z$ of the function $z=\tan ^{-1}(x y)$.

3 (a) Find the domain of $r(t)=\left\langle\sqrt{5 t+1}, t^{2}\right\rangle, t_{0}=1$ and $r\left(t_{0}\right)$
(b) Find the directional derivative of $f(x, y)=e^{2 x y}$ at $P(5,0)$, in the direction of $u=-\frac{3}{5} i+\frac{4}{5} j$
4 (a) Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{\sqrt{1-x^{2}} \sqrt{1-y^{2}}}$
(b) Use double integration to find the area of the plane region enclosed by the given curves $y=\sin x$ and $y=\cos x$ for $0 \leq x \leq \frac{\pi}{4}$
5 (a) Confirm that $\varphi(x, y, z)=x^{2}-3 y^{2}+4 z^{3}$ is a potential function for $F(x, y, z)=2 x i-6 y j+12 z^{2} k$.
(b) Evaluate $\int F$. $d r$ where $F(x, y)=\sin x i+\cos x j$ where C is the curve $r(t)=\pi i+t j, 0 \leq t \leq 2$
6 (a) Using Green's theorem evaluate $\oint y d x+x d y$, where C is the unit circle oriented counter clockwise.
(b) If σ is any closed surface enclosing a volume V and $=2 x i+2 y j+$ $3 z k$, Using Divergence theorem show that $\int_{\sigma} \int F . n d S=7 V$

PART B
 (Each question carries 5 Marks)
 Answer any TWO questions

$7 \quad$ Test the nature of the series $\sum_{k=1}^{\infty} \frac{4 k^{3}-6 k+5}{8 k^{7}+k-8}$
Check whether the series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k^{k}}{k!}$ is absolutely convergent or not.
Find the radius of convergence and interval of convergence of the series $\sum_{k=1}^{\infty} \frac{(x-5)^{k}}{5^{k}}$

Answer any TWO questions

If $u=f(y-z, z-x, x-y)$, prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$
A function $f(x, y)=x^{2}+y^{2}$; is given with a local linear approximation $L(x, y)=2 x+4 y-5$ to $f(x, y)$ at a point P . Determine the point P . Find the absolute extrema of the function $f(x, y)=x y-4 x$ on R where R is the triangular region with vertices $(0,0)(0,4)$ and $(4,0)$.

Answer any TWO questions

Evaluate the definite integral $\int_{0}^{1}\left(e^{2 t} i+e^{-t} j+2 \sqrt{t} k\right) d t$.
Find the velocity, acceleration, speed, scalar tangential and normal components of acceleration at the given t of

$$
r(t)=3 \sin t i+2 \cos t j-\sin 2 t k ; t=\frac{\pi}{2}
$$

Find the equation of the tangent plane and parametric equation for the normal line to the surface $z=4 x^{3} y^{2}+2 y-2$ at the point $(1,-2,10)$

Answer any TWO questions

Evaluate $\int_{0}^{1} \int_{y^{2}}^{1} \int_{0}^{1-x} x d z d x d y$
Find the volume of the solid in the first octant bounded by the co-ordinate
planes and the plane $x+y+z=1$

PART C

(Each question carries 5 Marks)

Answer any THREE questions

Find div F and curl F of $F(x, y, z)=x^{2} y i+2 y^{3} z j+3 z k$ Show that $\nabla^{2}\left(r^{n}\right)=n(n+1) r^{n-2}$ where $r=\|x i+y j+z k\|$
Find the work done by the force field $F(x, y, z)=\left(x^{2}+x y\right) i+\left(y-x^{2} y\right) j \quad$ on a particle that moves along the curve $C: x=t, y=\frac{1}{t}, 1 \leq t \leq 3$
Evaluate $\int F . d r$ where $F(x, y)=y i-x j$ along the triangle joining the vertices $(0,0),(1,0)$, and $(0,1)$.
Determine whether $F(x, y)=4 y i+4 x j$ is a conservative vector field. If so, find the potential function and the potential energy.

Answer any THREE questions

Using Green's theorem evaluate $\left.\oint_{C}\left(e^{x}+y^{2}\right) d x+\left(e^{y}+x^{2}\right) d y\right)$ where C is the boundary of the region between $y=x^{2}$ and $y=2 x$.
Evaluate the surface integral $\iint_{\sigma} \frac{x^{2}+y^{2}}{y} d S$ over the surface σ represented by the vector valued function
$r(u, v)=2 \cos v i+u j+2 \sin v k, 1 \leq u \leq 3, \quad 0 \leq v \leq \pi$
Using Divergence Theorem evaluate $\iint_{\sigma} F . n d s$ where $F(x, y, z)=$ $(x-z) i+(y-x) j+(2 z-y) k, \sigma$ is the surface of the cylindrical solid bounded by $x^{2}+y^{2}=a^{2}, z=0, z=1$.
Determine whether the vector field $F(x, y, z)=4\left(x^{3}-x\right) i+$ $4\left(y^{3}-y\right) j+4\left(z^{3}-z\right) k$ is free of sources and sinks. If it is not, locate them.
Using Stokes theorem evaluate $\int_{C} F . d r$ where
$F(x, y, z)=x^{2} i+4 x y^{3} j+y^{2} x k$,
C is the rectangle: $0 \leq x \leq 1,0 \leq y \leq 3$ in the plane $=y$

