A

10251

Reg. No.

SECOND SEMESTER B.TECH DEGREE EXAMINATION, JULY 2016 **Course Code: MA-102 Course Name: DIFFERENTIAL EQUATIONS**

Max. Marks: 100 Duration: 3 hrs

PART A Answer all questions Each carries 3 marks

- (1) Find the general solution of y''' y = 0
- (2) Find the wronskian of the following $e^{-x} \cos 5x$; $e^{-x} \sin 5x$
- (3) Solve $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 4y = e^{2x}$
- (4) Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = x^2$
- (5) Express f(x) = x as a Fourier series in the interval $-\pi < x < \pi$
- (6) Obtain the half range Fourier sine series for the function e^x in 0 < x < 2
- (7) Form the partial differential equation by eliminating the arbitrary function from $z = y^2 + 2f\left(\frac{1}{x} + \log y\right)$
- (8) Solve $p\sqrt{x} + q\sqrt{y} = \sqrt{z}$
- (9) Using the method of separation of variables solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x,0) = 3e^{-5x}$
- State the one dimensional wave equation with boundary conditions and initial conditions for solving it
- (11) In the Heat equation $\frac{\partial u}{\partial t} = \propto^2 \frac{\partial^2 u}{\partial x^2}$ what does \propto^2 indicate. State the boundary and initial conditions for solving it
- Find the steady state temperature distribution in a rod of length 25cm, if the ends of the rod are kept at 20° c and 70° c.

PART B

Answer one full question from each module

Module -I

(13) (a) Solve
$$y''' - 8y'' + 37 y' - 50 y = 0$$
 (6)

1

Α

(b)Determine all possible solutions to the initial value problem
$$y' = 1 + y^2$$
, $y(0) = 0$ in $|x| < 3$, $|y| < 2$ (5)

OR

(14) (a) Find the general solution of $y^{iv} - y''' - 9 \ y'' - 11 \ y' - 4 \ y = 0$ (6) (b) Determine all possible solutions to the initial value problem

$$y' = y^{\frac{1}{2}}, y(0) = 0.$$
 (5)

Module - II

(15) (a) Solve by method of variation of parameters $\frac{d^2y}{dx^2} + y = x\sin x$. (6)

(b) Solve
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x \sin x.$$
 (5)

OR

(16) (a) Solve
$$x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^2 + 2\log x$$
. (6)

(b) Solve
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = \sin 3x \sin 2x.$$
 (5)

Module - III

(17) (a) Obtain the Fourier series for the function f(x) given by

$$f(x) = \begin{cases} 1 + \frac{2x}{\pi} - \pi \le x \le 0\\ 1 - \frac{2x}{\pi} & 0 \le x \le \pi \end{cases}$$

$$(6)$$

(b)Obtain the Fourier series to represent the function

$$f(x) = |sinx|; -\pi < x < \pi$$
OR

(18) (a)Expand the function $f(x) = x \sin x$ as a Fourier series in the interval $-\pi \le x \le$ (6)

(b) Find the half range cosine series for the function
$$f(x) = x^2$$
 in the range $0 \le x \le \pi$ (5)

A

Module - IV

(19) (a)Solve
$$\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = 5e^{3x} - 7x^2y$$
. (6)

(b)Solve
$$(x + y)zp + (x - y)zq = x^2 + y^2$$
 (5)

OR

(20) (a) Solve
$$\frac{\partial^3 z}{\partial x^3} - 4 \frac{\partial^3 z}{\partial x^2 \partial y} + 4 \frac{\partial^3 z}{\partial x \partial y^2} = 2\sin(3x + 2y)$$
. (6)

(b) Solve
$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = \cos 2x \cos 3y$$
. (5)

Module - V

(21) A tightly stretched string with fixed end points $\mathbf{x} = \mathbf{0}$ and $\mathbf{x} = \mathbf{l}$ is initially in a position given by $y = y_0 \sin^3\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position, find the displacement $\mathbf{y}(\mathbf{x}, \mathbf{t})$.

 $\cap R$

(22) A tightly stretched string with fixed end points x = 0 and x = l is initially at rest in its equilibrium position. If it is vibrating by giving to each of its points a velocity $\lambda x(l-x)$, find the displacement of the string at any distance x from one end at any time t.

Module - VI

(23) A bar 10 cm long with insulated sides has its ends A and B maintained at 30^{0} c and 100^{0} c respectively until steady state conditions prevail. The temperature at A is suddenly raised to 20^{0} c and at the same time that of B is lowered to 40^{0} C. Find the temperature distribution in the bar at time t. (10)

OR

(24) A rod of 30cm long has its ends A and B kept at 30° c and 90° c respectively until steady state temperature prevails. The temperature at each end is then suddenly reduced to zero temperature and kept so. Find the resulting temperature function $\boldsymbol{u}(x,y)$ taking x=0 at A. (10)